(anonymous)

Transcript

1 Norepinephrine 1 Norepinephrine [1] Norepinephrine Identifiers [2] [3] CAS number (l) 51-41-2 (l) (dl) , 138-65-8 [4] ChemSpider 388394 Properties Molecular formula H NO C 11 8 3 − 1 Molar mass 169.18 g mol Melting point L: 216.5 – 218 °C ( decomp. ) D/L: 191 °C ( ) decomp. Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox references (INN) (abbreviated norepi or NE ) or noradrenaline (BAN) (abbreviated NA or NAd ) is a Norepinephrine [5] catecholamine with multiple roles including as a hormone and a neurotransmitter. As a stress hormone, norepinephrine affects parts of the brain where attention and responding actions are controlled. Along with epinephrine, norepinephrine also underlies the fight-or-flight response, directly increasing heart rate, triggering the release of glucose from energy stores, and increasing blood flow to skeletal muscle. Norepinephrine [6] can also suppress neuroinflammation when released diffusely in the brain from the locus ceruleus. When norepinephrine acts as a drug it increases blood pressure by increasing vascular tone through α-adrenergic receptor activation. The resulting increase in vascular resistance triggers a compensatory reflex that overcomes its direct stimulatory effects on the heart, called the baroreceptor reflex, which results in a drop in heart rate called reflex bradycardia. [7] Norepinephrine is synthesized from dopamine by dopamine β-hydroxylase. It is released from the adrenal medulla into the blood as a hormone, and is also a neurotransmitter in the central nervous system and sympathetic nervous system where it is released from noradrenergic neurons. The actions of norepinephrine are carried out via the binding to adrenergic receptors.

2 Norepinephrine 2 Etymology The term "norepinephrine" is derived from the chemical prefix nor- , which indicates that norepinephrine is the next lower homolog of epinephrine. The two structures differ only in that epinephrine has a methyl group attached to its nitrogen, while the methyl group is replaced by a hydrogen atom in norepinephrine. Chemistry Norepinephrine is a catecholamine and a phenethylamine. The natural stereoisomer is L − )-( R )-norepinephrine. The -( prefix , is derived from the German abbreviation for "N ohne Radikal" (N, the symbol for nitrogen, without nor- [8] radical), referring to the absence of the methyl functional group at the nitrogen atom. Origins Norepinephrine is released when a host of physiological changes are activated by a stressful event. In the brain, this is caused in part by activation of an area of the brain stem called the locus ceruleus. This nucleus is the origin of most norepinephrine pathways in the brain. Noradrenergic neurons project bilaterally (send signals to both sides of the brain) from the locus ceruleus along distinct pathways to many locations, including the cerebral cortex, limbic system, and the spinal cord, forming a neurotransmitter system. Norepinephrine is also released from postganglionic neurons of the sympathetic nervous system, to transmit the fight-or-flight response in each tissue respectively. The adrenal medulla can also be counted to such postganglionic nerve cells, although they release norepinephrine into the blood. Norepinephrine system The noradrenergic neurons in the brain form a neurotransmitter system, that, when activated, exerts effects on large areas of the brain. The effects are alertness and arousal, and influences on the reward system. Anatomically, the noradrenergic neurons originate both in the locus coeruleus and the lateral tegmental field. The axons of the neurons in the locus coeruleus act on adrenergic receptors in: • Amygdala • Cingulate gyrus • Cingulum • Hippocampus • Hypothalamus • Neocortex • Spinal cord • Striatum • Thalamus On the other hand, axons of neurons of the lateral tegmental field act on adrenergic receptors in hypothalamus, for example. This structure explains some of the clinical uses of norepinephrine, since a modification of the system affects large areas of the brain.

3 Norepinephrine 3 Mechanism Norepinephrine is synthesized from tyrosine as a precursor, and packed into synaptic vesicles. It performs its action by being released into the synaptic cleft, where it acts on adrenergic receptors, followed by the signal termination, either by degradation of norepinephrine, or by uptake by surrounding cells. Biosynthesis Norepinephrine is synthesized by a series of enzymatic steps in the adrenal medulla and postganglionic neurons of the sympathetic nervous system from the amino acid tyrosine: • The first reaction is the hydroxylation into dihydroxyphenylalanine (L-DOPA) (DOPA = 3,4-DiHydroxy-L-Phenylalanine), catalyzed by tyrosine hydroxylase. This is the rate-limiting step. • This is followed by decarboxylation into the neurotransmitter dopamine, catalyzed by pyridoxal phosphate & DOPA decarboxylase. • Last is the final β-oxidation into norepinephrine by dopamine beta hydroxylase, requiring ascorbate as a cofactor (electron donor). Tyrosine Levodopa Dopamine Norepinephrine Vesicular transport Between the decarboxylation and the final β-oxidation, norepinephrine is transported into synaptic vesicles. This is accomplished by vesicular monoamine transporter (VMAT) in the lipid bilayer. This transporter has equal affinity [9] for norepinephrine, epinephrine and isoprenaline. Release To perform its functions, norepinephrine needs to be released from synaptic vesicles. Many substances modulate this release, some inhibiting it and some stimulating it. For instance, there are inhibitory α2 adrenergic receptors presynaptically, that gives negative feedback on release by homotropic modulation. Receptor binding Norepinephrine performs its actions on the target cell by binding to and activating adrenergic receptors. The target cell expression of different types of receptors determines the ultimate cellular effect, and thus norepinephrine has different actions on different cell types. Termination Signal termination is a result of reuptake and degradation. Uptake Extracellular uptake of norepinephrine into the cytosol is either done presynaptically (uptake 1) or by non-neuronal cells in the vicinity (uptake 2). Furthermore, there is a vesicular uptake mechanism from the cytosol into synaptic vesicles.

4 Norepinephrine 4 Comparison of norepinephrine uptake [11] [10] [12] [11] Uptake Transporter Location Other substrates K Specificity Inhibitors V M max [10] (nmol/g/min) presynaptic Cocaine • 1.2 0.3 norepinephrine > methylnoradrenaline • Uptake 1 Norepinephrine [12] epinephrine > Tricyclic • (nasal decongestant) transporter tyramine antidepressants (e.g. • isoprenaline guanethidine • desipramine) Phenoxybenzamine • Amphetamine • 100 250 epinephrine > Uptake 2 dopamine normetanephrine • • cell membrane • 5-HT norepinephrine > steroid hormones • of isoprenaline (e.g. corticosterone) histamine • non-neuronal [9] phenoxybenzamine • cells [12] [12] [12] [12] [12] Synaptic norepinephrine > Reserpine • - VMAT ~0.2 dopamine • [12] Vesicular Tetrabenazine vesicle • 5-HT • epinephrine > [12] [12] [12] isoprenaline membrane guanethidine • [12] • MPP+ Degradation In mammals, norepinephrine is rapidly degraded to various metabolites. The principal metabolites are: • Normetanephrine (via the enzyme catechol-O-methyl transferase, COMT) • 3,4-Dihydroxymandelic acid (via monoamine oxidase, MAO) Vanillylmandelic acid • (3-Methoxy-4-hydroxymandelic acid), also referred to as vanilmandelate or VMA (via MAO) • 3-Methoxy-4-hydroxyphenylethylene glycol, "MHPG" or "MOPEG" (via [12] Norepinephrine degradation. Enzymes are shown in boxes. MAO) [13] • Epinephrine (via PNMT) In the periphery, VMA is the major metabolite of catecholamines, and is excreted unconjugated in the urine. A minor metabolite (although the major one in the central nervous sytem) is MHPG, which is partly conjugated to sulfate or [12] glucuronide derivatives and excreted in the urine.

5 Norepinephrine 5 Noradrenergic agents By indication Norepinephrine may be used for the indications attention-deficit/hyperactivity disorder, depression and hypotension. Norepinephrine, as with other catecholamines, itself cannot cross the blood-brain barrier, so drugs such as amphetamines are necessary to increase brain levels. Attention-deficit/hyperactivity disorder Norepinephrine, along with dopamine, has come to be recognized as playing a large role in attention and focus. For people with ADHD, psychostimulant medications such as methylphenidate (Ritalin/Concerta), dextroamphetamine (Dexedrine), and Adderall (a mixture of dextroamphetamine and racemic amphetamine salts) are prescribed to help increase levels of norepinephrine and dopamine. Atomoxetine (Strattera) is a selective norepinephrine reuptake inhibitor, and is a unique ADHD medication, as it affects only norepinephrine, rather than dopamine. As a result, Strattera has a lower abuse potential. However, it may not be as effective as the psychostimulants are with many people who have ADHD. Consulting with a physician, physician assistant or nurse practitioner is needed to find the appropriate medication and dosage. (Other SNRIs, currently approved as antidepressants, have also been used off-label for treatment of ADHD.) Depression Differences in the norepinephrine system are implicated in depression. Serotonin-norepinephrine reuptake inhibitors are antidepressants that treat depression by increasing the amount of serotonin and norepinephrine available to postsynaptic cells in the brain. There is some recent evidence implying that SNRIs may also increase dopamine [14] transmission. This is because SNRIs work by inhibiting reuptake, i.e. preventing the serotonin and norepinephrine transporters from taking their respective neurotransmitters back to their storage vesicles for later use. If the norepinephrine transporter normally recycles some dopamine too, then SNRIs will also enhance dopaminergic transmission. Therefore, the antidepressant effects associated with increasing norepinephrine levels may also be partly or largely due to the concurrent increase in dopamine (particularly in the prefrontal cortex of the brain). Tricyclic antidepressants (TCAs) increase norepinephrine activity as well. Most of them also increase serotonin activity, but tend to produce unwanted side effects due to the nonspecific inactivation of histamine, acetylcholine and alpha-1 adrenergic receptors. Common side effects include sedation, dry mouth, constipation, sinus tachycardia, [15] memory impairment, orthostatic hypotension, blurred vision and weight gain. For this reason, they have largely been replaced by newer selective reuptake drugs. These include the SSRIs, e.g. fluoxetine (Prozac), which however have little or no effect on norepinephrine, and the newer SNRIs described above, such as venlafaxine (Effexor) and duloxetine (Cymbalta). Hypotension Norepinephrine is also used as a vasopressor medication (for example, brand name Levophed) for patients with critical hypotension. It is given intravenously and acts on both α adrenergic receptors to cause and α 2 1 vasoconstriction. Its effects are often limited to the increasing of blood pressure through agonist activity on α and α 1 2 receptors and causing a resultant increase in peripheral vascular resistance. At high doses, and especially when it is combined with other vasopressors, it can lead to limb ischemia and limb death. Norepinephrine is mainly used to treat patients in vasodilatory shock states such as septic shock and neurogenic shock and has shown a survival benefit over dopamine.

6 Norepinephrine 6 By site of action Different medications affecting norepinephrine function have their targets at different points in the mechanism, from synthesis to signal termination. Synthesis modulators α-methyltyrosine is a substance that intervenes in norepinephrine synthesis by substituting tyrosine for tyrosine hydroxylase, and blocking this enzyme. Vesicular transport modulators [9] This transportation can be inhibited by reserpine and tetrabenazine. Release modulators Inhibitors of norepinephrine release [16] [16] Receptor Substance acetylcholine muscarinic receptor norepinephrine α2 receptor (itself)/epinephrine 5-HT 5-HT receptor adenosine P1 receptor PGE EP receptor histamine H2 receptor enkephalin δ receptor dopamine D2 receptor ATP P2 receptor Stimulators of norepinephrine release [16] [16] Receptor Substance adrenaline β2 receptor angiotensin II AT1 receptor Receptor binding modulators Examples include alpha blockers for the α-receptors, and beta blockers for the β-receptors.

7 Norepinephrine 7 Termination modulators Uptake modulators [9] Inhibitors of uptake 1 include: • cocaine • tricyclic antidepressants • desipramine phenoxybenzamine • • amphetamine [9] of uptake 2 include: Inhibitors normetanephrine • steroid hormones • • phenoxybenzamine ’ s Disease Anti-Inflammatory agent role in Alzheimer The norepinephrine from locus ceruleus cells in addition to its neurotransmitter role locally defuses from "varicosities". As such it provides an endogenous anti-inflammatory agent in the microenvironment around the [6] neurons, glial cells, and blood vessels in the neocortex and hippocampus. Up to 70% of norepinephrine projecting cells are lost in Alzheimer s Disease. It has been shown that norepinephrine stimulates mouse microglia to suppress ’ Aβ-induced production of cytokines and their phagocytosis of Aβ suggesting this loss might have a role in causing [6] this disease. Nutritional sources The synthesis of norepinephrine depends on the presence of tyrosine, an amino acid found in proteins such as meat, nuts, and eggs. Dairy products such as cheese also contain high amounts of tyrosine (the amino acid is named for "tyros," the Greek word for cheese). Tyrosine is the precursor to dopamine, which is in itself a precursor of epinephrine and norepinephrine. Shown here is the chemical structure of tyrosine. Serotonin, a neurotransmitter that is in many ways the opposite of the The biosynthesis of norepinephrine depends upon the presence of tyrosine, an amino acid building catecholamines, is also directly synthesized from an amino acid block of many proteins in meat, nuts and eggs, (tryptophan). However, tryptophan has a somewhat different process of for example. degradation. When serotonin is catabolized in the body, it does not break down into useful substrates in the way that dopamine is further degraded into epinephrine and norepinephrine. Instead, it breaks down into 5-hydroxyindoleacetic acid (5-HIA), an organic acid which may be harmful in high amounts. Tryptophan can further be catabolized into kynurenate, quinolinate, and picolinate, harmful substances that are generally regarded as markers of bodily inflammation. [17] Banana peels contain significant amounts of norepinephrine and dopamine.

8 Norepinephrine 8 See also • Norepinephrine bitartrate Catecholaminergic polymorphic ventricular tachycardia • External links [18] Mental Health: A report of surgeon general. Etiology of Anxiety Disorders • www. biopsychiatry. com/ • http:/ htm / nordop. References 1 ] Merck Index , 11th Edition, 6612 . [ ] http:/ [ / www. commonchemistry. org/ ChemicalDetail. aspx?ref=51-41-2 2 3 http:/ / www. ] org/ ChemicalDetail. aspx?ref=138-65-8 [ commonchemistry. 4 ] [ / www. chemspider. com/ 388394 http:/ [ ] "Norepinephrine definition" (http:/ / dictionary. reference. com/ browse/ Norepinephrine). dictionary.reference.com. . Retrieved 2008-11-24. 5 6 Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, Jardanhazi-Kurutz D, Walter J, Kirchhoff F, [ ] Hanisch UK, Kummer MP. (2010). Locus ceruleus controls Alzheimer's disease pathology by modulating microglial functions through / www. pnas. org. libproxy. ucl. norepinephrine. (http:/ uk/ content/ 107/ 13/ 6058. full. pdf) Proc Natl Acad Sci U S A. 107:6058 – 6063 ac. doi:10.1073/pnas.0909586107 PMID 20231476 [ 7 ] "Introduction to Autonomic Pharmacology" (http:/ / www. fleshandbones. com/ readingroom/ pdf/ 225. pdf) (PDF). Elsevier International. . Link redirected to commercial site! [ ] TIHKAL on "nor" (http:/ / www. drugsinfo. net/ tihkal/ tihkal01. html) 8 9 ] Pharmacology . Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page 167 [ Rang, H. P. (2003). 10 These values are from rat heart. Unless else specified in table, then ref is: Rang, H. P. (2003). Pharmacology . Edinburgh: Churchill [ ] Livingstone. ISBN 0-443-07145-4. Page 167 11 ] Unless else specified in table, then ref is: Rang, H. P. (2003). Pharmacology . Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page [ 167 [ ] Unless else specified in boxes, then ref is: Rod Flower; Humphrey P. Rang; Maureen M. Dale; Ritter, James M. (2007). Rang & Dale's 12 pharmacology . Edinburgh: Churchill Livingstone. ISBN 0-443-06911-5. 13 ] "Endokrynologia Kliniczna" ISBN 83-200-0815-8, page 502 [ 14 http:/ / [ stahlonline. cambridge. org/ ] prescribers_drug. jsf?page=0521683505c95_p539-544. html. therapeutics& name=Venlafaxine& title=Therapeutics [ 15 ] http:/ / www. preskorn. com/ columns/ 9803. html [ 16 Unless else specified in table, then ref is: Rang, H. P. (2003). Pharmacology . Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4. Page ] 129 / [ Kanazawa, Kazuki; Hiroyuki Sakakibara (2000). "High content of Dopamine, a strong antioxidant, in Cavendish banana" (http:/ 17 152. 1. ] 118. 33/ Files/ Journal of Agricultural and Food Chemistry 2000 48 (3) 844-848. pdf) (PDF). Journal of Agriculture and Food Chemistry 48 : 844 848. doi:10.1021/jf9909860. . Retrieved 8 November 2007. – [ 18 ] http:/ / www. html gov/ library/ mentalhealth/ chapter4/ sec2_1. surgeongeneral.

9 Article Sources and Contributors 9 Article Sources and Contributors Norepinephrine : http://en.wikipedia.org/w/index.php?oldid=385931198 Contributors : 1.1.1, 5 albert square, A314268, AC+79 3888, AStudent, AbinoamJr, Acdx, Ajaybsc, Albmont, Source Alex.tan, Alexis Örtenholm, Alvis, Andrew73, Arcadian, Ashleyisachild, Azazilsgoat, Beetstra, Belovedfreak, Bensaccount, BobArctor, Bradleyosborn, C6541, CDN99, CUSENZA Mario, Cacycle, Calvin 1998, Can't sleep, clown will eat me, Casforty, Cat Whisperer, Chaldor, Charles Gaudette, Chem-awb, Choij, Crazyvas, D Anthony Patriarche, Davidruben, Delegeferenda, Delta G, Deltabeignet, Diberri, DocWatson42, DustWolf, ER MD, Edgar181, Eequor, El3ctr0nika, Erud, Evand, Eyu100, Fantumphool, Fenice, Flamingnerd, Fredrik, Freecat, Gcm, Gingerjess, Goldenphoenix86, Harbinary, Heah, Heathniederee, Hede2000, Hoffmeier, Hopkapi, Iraqidude, Jfdwolff, Josh Cherry, JulesH, Jü, Kitvonnegut, Ktai, Kwijiboamigo, Leafyplant, LittleHow, Looxix, Lukeblue9254, MSGJ, Magnus Manske, MarcoTolo, Markus451, Mashford, Master1228, Mav, MichaK, Michael Hardy, Michaelbusch, Michaledwardmarks, Mikael Häggström, MisterSheik, Mrs.meganmmc, Nbauman, Nimur, Noobeditor, PFHLai, PL290, Parker007, Paul August, PeeJay2K3, Plandu, Ponzpons, Possum, Razorflame, Richardcavell, Rjwilmsi, Roadnottaken, Romanm, RossMM, Rossmcd, Runefrost, SVI, Sayeth, Sbrools, Scientizzle, Shoy, Skittleys, SoCal, SuperTycoon, Tarotcards, Tarquin, Tea with toast, Teemu08, The Red, The Right Honourable, The Son of Man, Thedeejay, Think outside the box, Tide rolls, TimGrin, TomRau, Tomchiukc, Varnav, Vojtech.dostal, Walkerma, WanderingHermit, Wickey-nl, WriterHound, XanaDrew, Xxxx00, Роман Беккер, 242 anonymous edits Image Sources, Licenses and Contributors Source : http://en.wikipedia.org/w/index.php?title=File:Norepinephrine_structure_with_descriptor.svg License : Creative Commons Image:Norepinephrine structure with descriptor.svg Contributors Attribution-Sharealike 3.0 : User:Acdx Image:Norepinephrine-3d-CPK.png Source : http://en.wikipedia.org/w/index.php?title=File:Norepinephrine-3d-CPK.png License : Creative Commons Attribution-Sharealike 2.5 Contributors : User:Sbrools : Benjah-bmm27, Edgar181, Photohound Source Image:L-tyrosine-skeletal.png License : Public Domain Contributors : http://en.wikipedia.org/w/index.php?title=File:L-tyrosine-skeletal.png Image:3,4-Dihydroxy-L-phenylalanin (Levodopa).svg Source : http://en.wikipedia.org/w/index.php?title=File:3,4-Dihydroxy-L-phenylalanin_(Levodopa).svg License : Public Domain Contributors : User:NEUROtiker Image:Dopamine2.svg : http://en.wikipedia.org/w/index.php?title=File:Dopamine2.svg License : Public Domain Contributors : User:Harbin Source : Creative Commons : http://en.wikipedia.org/w/index.php?title=File:Norepinephrine_structure_with_descriptor.svg License Image:Norepinephrine_structure_with_descriptor.svg Source Contributors Attribution-Sharealike 3.0 : User:Acdx Source File:Noradrenaline breakdown.svg License : Public Domain Contributors : User:Mikael Häggström : http://en.wikipedia.org/w/index.php?title=File:Noradrenaline_breakdown.svg Image:L-Tyrosin - L-Tyrosine.svg Source : http://en.wikipedia.org/w/index.php?title=File:L-Tyrosin_-_L-Tyrosine.svg License : Public Domain Contributors : User:NEUROtiker License Creative Commons Attribution-Share Alike 3.0 Unported http:/ / creativecommons. 0/ licenses/ by-sa/ 3. org/

Related documents

file://C:\Users\OMID\Documents\Downloads\Compressed\zebras\Why

file://C:\Users\OMID\Documents\Downloads\Compressed\zebras\Why

Pa g e 1 of 212 WHY ZEBRAS DON'T GET ULCERS Third Edition ROBERT M. SAPOLSKY Copyright © 1994,1998 by W. H. Freeman, and 2004 by Robert M. Sapolsky ISBN:9780805073690 For Lisa, my best friend, who has...

More info »
Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before After Study

Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock: A Retrospective Before After Study

[ Original Research Critical Care ] Hydrocortisone, Vitamin C, and Thiamine for the Treatment of Severe Sepsis and Septic Shock A Retrospective Before-After Study Paul E. Marik, MD, FCCP; Vikramjit Kh...

More info »
GENERIC NAME:

GENERIC NAME:

Drug Profiles Table of Contents Revised 09 17 - 2015 ] [ - Oxytocin ABCIXIMAB Phenylephrine Nasal Spray 0.5% Acetylsalicylic Acid, aspirin, ASA Proparacaine Hydrochloride Ophthalmic Acetylsalicylic Ac...

More info »
The Health Consequences of Smoking   50 Years of Progress: A Report of the Surgeon General

The Health Consequences of Smoking 50 Years of Progress: A Report of the Surgeon General

The Health Consequences of Smoking—50 Years of Progress A Report of the Surgeon General U.S. Department of Health and Human Services

More info »
strattera pi

strattera pi

1 serious cardiac problems that may place them at increased HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use vulnerability to its noradrenergic e...

More info »
Lights and Sirens Use by EMS May 2017

Lights and Sirens Use by EMS May 2017

U. S. Department of Transportation National Highway Traffic Safety Administration Office of Emergency Medical Services (EMS) Lights and Siren Use by Emergency Medical Services (EMS) : Above All Do No ...

More info »
Pain: Current Understanding of Assessment, Management, and Treatments

Pain: Current Understanding of Assessment, Management, and Treatments

Pain: Current Understanding of Assessment, Management, and Treatments NATIONAL PHARMACEUTICAL COUNCIL, INC This monograph was developed by NPC as part of a collaborative project with JCAHO. December 2...

More info »
nightmaredisorder

nightmaredisorder

Best Practice Guide for the Treatment of Nightmare Disorder in Adults Standards of Practice Committee: 2 3 4 5 1 ; Susmita Chowdhuri, M.D. R. Nisha Aurora, M.D. ; ; Kenneth R. Casey, M.D. ; Sanford H....

More info »
JCFS 11(1).pdf

JCFS 11(1).pdf

Volume 11 Number 1 2003 CONTENTS EDITORIAL 1 Chronic Fatigue Syndrome Guidelines Kenny De Meirleir Neil McGregor Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Clinical Working Case Definition, D...

More info »
VA/DoD Clinical Practice Guideline for Diagnosis and Treatment of Low Back Pain

VA/DoD Clinical Practice Guideline for Diagnosis and Treatment of Low Back Pain

VA / D oD CLINICAL PRACTICE GUIDELINE FOR DIAGNOSIS AND TREATMENT OF LOW BACK PA I N Department of Veterans Affairs Department of Defense QUALIFYING STATEMENTS The Department of Veterans Affairs and t...

More info »
623 5 exercise book front matter working

623 5 exercise book front matter working

American Physiological Society Resource Book for the Design of Animal Exercise Protocols February 2006 i

More info »
219344 PatientSelfHelpGuide .indd

219344 PatientSelfHelpGuide .indd

Vulvodynia: A Self - Help Guide www.nva.org

More info »
K Dreams Pgs 9 360

K Dreams Pgs 9 360

Psychology/Spirituality/Popular Culture Karl Jansen M.D., Ph.D. Ketamine: Dreams and Realities Ketamine: Dreams and Realities “Karl Jansen’s book Ketamine: Dreams and Realities is a goldmine of inform...

More info »
BUL119030488.tif

BUL119030488.tif

PsychoLogical 1996 the American Psychological Association, Inc. Copyright Bulletin by No. Vol. 0033-2909/96/$3.00 1996. 3,488-531 119. • Support Between Processes: Relationship The and Social Physiolo...

More info »
The Effects of Adderall on Maternal and Fetal Health

The Effects of Adderall on Maternal and Fetal Health

W estern M gan U niv ersit y ichi hol orks a t W MU Sc arW Honors Theses Lee Honors College 4-22-2015 ffec t s of Adde r al The E a t e r n al a nd F et al l on M H e alth A l yson B r a d y Follow th...

More info »
AAEM RSA50DrugFactsEveryEPShouldKnow

AAEM RSA50DrugFactsEveryEPShouldKnow

American Academy of Emergency Medicine Resident and Student Association 50 DRUGS EVERY EMERGENCY PHYSICIAN SHOULD KNOW Thanks for using this guide. Please note that this is not meant to represent ever...

More info »
craig sloane   naadac handouts

craig sloane naadac handouts

The Perfect Storm: Gay Men, Crystal Meth and Sex Cultural Considerations for Gay Affirming Treatment Craig Sloane, LCSW, CASAC Private Practice New York City [email protected] 917-670-0483

More info »
mindfulness now and zen

mindfulness now and zen

Now and Zen: How mindfulness can change your brain and improve your health Tuesday, March 8, 2016 6:00 – 7:30 p.m. The Joseph B. Martin Conference Center The New Research Building Harvard Medical Scho...

More info »
Complex Regional Pain Syndrome After Hand Surgery

Complex Regional Pain Syndrome After Hand Surgery

Complex Regional Pain Syndrome After Hand Surgery * MD, PhD PhD Zhongyu Li, , Beth P. Smith, , Christopher Tuohy, PhD , , Thomas L. Smith, MD L. Andrew Koman, MD KEYWORDS    Chronic pain Upper extr...

More info »